Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по MathCAD 12

Пример: огибающая и фаза нормального случайного процесса

Завершим разговор о моделировании случайных процессов примером, часто встречающимся в задачах статистической радиофизики. Рассмотрим модель, представляющую собой сумму гармонической функции и нормально распределенной шумовой компоненты, которая хорошо описывает передачу сигнала в электронных устройствах в условиях помех (листинги 12.24-12.25) и называется узкополосным нормальным процессом. Как известно, узкополосный процесс представим в виде E(t)exp(iф(t)), где случайные функции E(t) и ф(t) называются, соответственно, его огибающей и фазой. Мы приведем пример нулевого сигнала (т. е. расчет огибающей и фазы чистого случайного процесса), хотя минимальное изменение листинга 12.25 даст вам возможность промоделировать и ненулевые значения сигнала.

Первая половина листинга 12.24 представляет собой подготовительный этап, заключающийся в генерации двух векторов с нормальным распределением вероятности. Из курса математической статистики известно, что узкополосный гауссов процесс можно представить в виде, приведенном в последней строке листинга 12.24, причем случайные функции A(t) и C(t) называются квадратурными составляющими нормального случайного процесса. Графики A(t) и C(t) показаны на рис. 12.13. Листинг 12.25 содержит суммирование полученных шумовых компонент с составляющими гармонического сигнала и выдает в качестве результата функции E(t) и ф(t) (они показаны на рис. 12.14).

Листинг 12.14. Квадратурные составляющие нормального случайного процесса:

Иллюстрированный самоучитель по MathCAD 12 › Статистика › Пример: огибающая и фаза нормального случайного процесса

Иллюстрированный самоучитель по MathCAD 12 › Статистика › Пример: огибающая и фаза нормального случайного процесса
Рис. 12.13. Квадратурные составляющие случайного процесса (продолжение листинга 12.24)

Листинг 12.25. Огибающая и фаза нормального случайного процесса (продолжение листинга 12.24):

Иллюстрированный самоучитель по MathCAD 12 › Статистика › Пример: огибающая и фаза нормального случайного процесса

Иллюстрированный самоучитель по MathCAD 12 › Статистика › Пример: огибающая и фаза нормального случайного процесса
Рис. 12.14. Огибающая и фаза нормального случайного процесса (продолжение листингов 12.24-12.25)

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.