Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 9

Уравнения в частных производных. Задача о колебаниях бесконечной струны.

Константу можно положить равной нулю (несложно доказать, что общности метода это не ограничит), а функцию _F1 обозначим как F.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Уравнения в частных производных. Задача о колебаниях бесконечной струны.

Тогда естественно определить функцию F2 следующим образом.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Уравнения в частных производных. Задача о колебаниях бесконечной струны.

Следовательно, искать решение уравнения нужно в таком виде.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Уравнения в частных производных. Задача о колебаниях бесконечной струны.

В последнем выражении присутствует уже только одна неизвестная функция F. При этом первое слагаемое F(at+x) описывает волну, распространяющуюся влево, а слагаемое F(-at+x) – волну, которая распространяется вправо. Непосредственно функцию F будем искать из оставшегося неиспользованным начального условия для значения функции u(x,t) в начальный момент времени.

Согласно полученному выражению для функции u(x,t), в начальный момент (при t=0) она равна следующему.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Уравнения в частных производных. Задача о колебаниях бесконечной струны.

С другой стороны, это функция f (х), т.е. начальное отклонение струны. Для определенности возьмем функцию f (x) в таком виде.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Уравнения в частных производных. Задача о колебаниях бесконечной струны.

Первоначальный профиль струны, таким образом, имеет форму симметричного треугольника.

На заметку
Функция Heaviside(x) равна 1 при х>0 и 0 – в противном случае
.

Функция F тогда равна следующему.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Уравнения в частных производных. Задача о колебаниях бесконечной струны.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.