Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Maple 9

Приближенные методы решения дифференциальных уравнений. Метод разложения по малому параметру.

Среди приближенных методов решения дифференциальных уравнений достаточно распространенным является метод разложения по малому параметру. Идея, положенная в основу метода, проста: в уравнении (или системе) выделяется малый параметр, а решение ищется в виде ряда по этому параметру.

На заметку
К сожалению, далеко не в каждом уравнении такой малый параметр можно выделить
.

В качестве примера рассмотрим следующую задачу.

Задача 5.7

Найти приближенное решение в виде многочлена второго порядка по малому параметру для задачи Коши: y' = εx-y^2.

Задаем исходное уравнение.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Приближенные методы решения дифференциальных уравнений. Метод разложения по малому параметру.

Поскольку это уравнение первого порядка, начальное условие только одно.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Приближенные методы решения дифференциальных уравнений. Метод разложения по малому параметру.

Строго говоря, данное уравнение вычислительным ядром Maple решается точно. Ниже приведена соответствующая команда, однако, без указания результата. Причина проста – результат этот весьма нетривиален. Желающие могут убедиться в этом самостоятельно.

Последнее, кстати, является свидетельством того, что точный результат искать не всегда полезно; зачастую достаточно ограничиться приближенным решением – оно может оказаться вполне приемлемым по точности и в то же время простым и наглядным.

Решение ищем в виде ряда по малому параметру – в данном случае это е. Поэтому у(х) представляем в следующем виде.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Приближенные методы решения дифференциальных уравнений. Метод разложения по малому параметру.

Внимание!
Представленная выше команда, с помощью которой функции у(х) присваивается значение, на самом деле функцию не определяет. Если в командной строке ввести команду у(х), в области вывода появится у0(х) + еу1(х) + еу2(х). Но если команду заменить, скажем, на y(t), результат будет y(t). Другими словами, присваивание выполняется "на уровне названий", а у(х) в данном случае является не результатом действия оператора у() на переменную х, а названием переменной
.

Уравнение, таким образом, будет иметь следующий вид.

Иллюстрированный самоучитель по Maple 9 › Дифференциальные уравнения › Приближенные методы решения дифференциальных уравнений. Метод разложения по малому параметру.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.