Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по MatLab

Эрмитовая многоинтервальная интерполяция. Сравнение сплайновой и эрмитовой интерполяции.

MATLAB 6.0 дает возможность в графическом окне использовать еще один вид многоинтервальной интерполяции на основе полиномов третьей степени Эрмита. Техника интерполяции здесь таже, что и в случае сплайновой интерполяции, (рис. 17.16).

Полиномы Эрмита имеют более гибкие линии, чем сплайны. Они точнее следуют за отдельными изгибами исходной зависимости. Это хорошо показывает рис. 17.16.

Иллюстрированный самоучитель по MatLab › Обработка данных › Эрмитовая многоинтервальная интерполяция. Сравнение сплайновой и эрмитовой интерполяции.
Рис. 17.16. Пример эрмитовой интерполяции синусоиды в графическом окне

Сравнение сплайновой и эрмитовой интерполяции

Оба вида интерполяции в данном случае дают превосходные результаты, поскольку представляемая ими кусочная функция практически почти точно проходит через все заданные точки. Однако если учесть, что эти точки принадлежат синусоиде, то в данном случае результаты сплайновой интерполяции оказываются явно лучшими. Особенно это характерно для экстремальных точек.

Поскольку в этих двух методах интерполяции кривая интерполяции проходит точно через узловые точки, в этих точках погрешности интерполяции равны нулю. Вы можете проверить это задав вывод графика погрешности. В целом, можно заключить, что сплайновая интерполяция лучше, когда нужно эффективное сглаживание быстро меняющихся от точки к точке данных и когда исходная зависимость описывается линиями, которые мы наблюдаем при построении их с помощью гибкой линейки. Эрмитова интерполяция лучше отслеживает быстрые изменения исходных данных, но имеет худшие сглаживающие свойства.

Все это говорит о том, что надо внимательно подходить к оценке приемлемости того или иного вида интерполяции (или аппроксимации) для конкретных типов исходных данных.

Что нового мы узнали?

В этом уроке мы научились:

  • Выполнять статистическую обработку элементов массивов.
  • Осуществлять триангуляцию и строить диаграммы Вороного.
  • Осуществлять прямое и обратное преобразование Фурье.
  • Осуществлять аппроксимацию и интерполяцию данных.
  • Вести обработку данных в графических окнах.
Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.