• Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;


Иллюстрированный самоучитель по MathCAD 11

Собственные векторы и собственные значения матриц

Вторая по частоте применения задача вычислительной линейной алгебры – это задача поиска собственных векторов х и собственных значений X матрицы А, т. е. решения матричного уравнения Ах=Хх. Такое уравнение имеет решения в виде собственных значений L1L2,… и соответствующих им собственных векторов x1, х2,… Для решения таких задач на собственные векторы и собственные значения в Mathcad встроено несколько функций, реализующих довольно сложные вычислительные алгоритмы:

  • eigenvais(A) – вычисляет вектор, элементами которого являются собственные значения матрицы А;
  • eigenvecs(A) – вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям матрицы А;
    • n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения, вычисляемого eigenvais;
  • eigenvec(A,A.) – вычисляет собственный вектор для матрицы А и заданного собственного значения L;
    • А – квадратная матрица.

Применение этих функций иллюстрирует листинг 9.36. Проверка правильности нахождения собственных векторов и собственных значений приведена в листинге 9.37. Причем проверка правильности выражения Ах=Lх проведена дважды – сначала на числовых значениях х и L, а потом путем перемножения соответствующих матричных компонентов.

Листинг 9.36. Поиск собственных векторов и собственных значений:

Иллюстрированный самоучитель по MathCAD 11 › Матричные вычисления › Собственные векторы и собственные значения матриц

Листинг 9.37. Проверка правильности нахождения собственных векторов собственных значений (продолжение листинга 9.36):

Иллюстрированный самоучитель по MathCAD 11 › Матричные вычисления › Собственные векторы и собственные значения матриц

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.