Комплексные числа
Мнимая единица
На специальной панели символов системы Mathematica имеется мнимая единица, но иногда ее удобно ввести просто как букву I или даже как \[Imaginaryi] или \[ImaginaryJ]. Вот примеры.
2I + 11 + 2i2J + 55 + 2iВещественная часть комплексного числа: функция Re
Это совсем незамысловатая функция, возвращающая вещественную часть комплексного числа.
Re[3 + 4I] 3Re[a + bI] -Im[b] + Re[a]Заметьте, что в последнем примере вещественность а и b не предполагается.
Мнимая часть комплексного числа: функция Im
Тоже совсем незамысловатая функция, возвращающая мнимую часть комплексного числа.
Im[3 + 4I] 4 {Im[a + bI], ComplexExpand[Im[a + b I]]} {Im[a] + Re[b], b}Заметьте, что в случае Im[a+b I] вещественность а и b не предполагается – в отличие от случая, когда используется функция ComplexExpand.
Аргумент комплексного числа: функция Arg
Функция Arg[z] возвращает аргумент комплексного числа z.
Вот как, например, можно получить аргументы корней четвертой степени из 1.

Возвращаемый угол всегда по абсолютной величине не превосходит n.
Сопряженное комплексное число: функция Conjugate
Выражение Conjugate [z] представляет собой сопряженное комплексное число z. Вот как, например, можно получить число, сопряженное к х+I у.
Conjugate[x + Iy] Conjugate[x] - IConjugate[y]Заметьте, что х и у предполагаются комплексными.
Резюме
Мы рассмотрели основные числовые системы, предусмотренные в системе Mathematica. Они полностью охватывают классическую математику. Благодаря такому богатству система Mathematica может помочь в решении практически любых математических задач. Но благодаря этому же богатству при решении задач можно столкнуться с теми же проблемами, что и в математике. И потому решение исследовательских задач с помощью системы Mathematica может потребовать основательного знакомства с методологией применения данной системы в конкретной области науки и техники. Конечно, по высказыванию Гаусса, математика – царица всех наук. И потому в первую очередь следует освоить именно методологию применения системы Mathematica к решению математических задач. И начнем мы с царицы математики (по выражению того же Гаусса) – с арифметики.
