• Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом


Иллюстрированный самоучитель по Mathematica 5

Трудные случаи при разложении чисел в цепные дроби

Казалось бы, при разложении чисел в цепные дроби никаких неожиданностей быть не может, поскольку любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Ну а при желании такую дробь всегда можно оборвать, и тогда получится приближение разлагаемого числа с помощью цепной дроби. Но мы уже видели, что не все так просто. Давайте попробуем разложить в цепную дробь число Пизо.

Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Трудные случаи при разложении чисел в цепные дроби

Собственно, не хватило точности. Пока ничего удивительного, даже подсказка есть. Последуем совету.

Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Трудные случаи при разложении чисел в цепные дроби

Сейчас уже $MaxExtraPrecision = 10000000, и потому несколько странно выглядит упоминание о точности 3698. Может быть, система Mathematica вообще не может разложить это число в цепную дробь? Это очень досадно! Не может найти даже 10 звеньев! А если мне нужно узнать, чему равно, например, 1947-е звено? Похоже, ничего поделать нельзя.

Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Трудные случаи при разложении чисел в цепные дроби

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.