Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Mathematica 5

Дробная часть вещественного числа (функция FractionalPart)

Пусть х – вещественное число. Тогда его дробную часть {х} можно определить равенством: {х} = х -[х]. По этому, общепринятому в математике определению дробная часть всегда неотрицательна и меньше единицы: 0<{х}<1. Однако в системе Mathematica используется несколько иное определение:

FractionalPart[x] = x - IntegerPart[x]

Поэтому FractionalPart [х] отрицательна для нецелых отрицательных х.

Чтобы освоиться с функцией FractionalPart, напишем программу, которая распечатывает результат применения функции FractionalPart к каждому элементу списка. Прежде всего нам понадобится определить функцию, которая оформляет вывод следующим образом.

FractionalPart[ х ] – результат применения функции FractionalPart к х.

Вот как для этого можно определить функцию f.

f = (Print["FractionalPart[", #1,"]= ",FractionalPart[#1]] &)

Теперь можем написать программу, в которой функция f применяется к каждому элементу списка.

f/@{x,2.4.0.3999999999999999',2.6.0.6000000000000001\-2.4,- 0.3999999999999999",-2.6,Pi,10,-Pi^2.2*Sin[1],Exp[Pi*Sqrt[163]]}

Вот результат:

Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Дробная часть вещественного числа (функция FractionalPart)

Давайте теперь вычислим:

Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Дробная часть вещественного числа (функция FractionalPart)

Неужели число Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Дробная часть вещественного числа (функция FractionalPart) равно нулю? Ведь это означает, что Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Дробная часть вещественного числа (функция FractionalPart) целое. Давайте повторим вычисления.

Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Дробная часть вещественного числа (функция FractionalPart)

О, это уже какая-то загадка. Разные результаты при вычислении одного и того же выражения! А вот и разгадка: мы проводили вычисления с разной разрядностью, притом в обоих случаях точность была недостаточна. Давайте повторим вычисления с большей разрядностью.

Иллюстрированный самоучитель по Mathematica 5 › Числа, их представление и операции над ними › Дробная часть вещественного числа (функция FractionalPart)

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.