Иллюстрированный самоучитель по SPSS 10/11

Пробит-анализ

Откроется диалоговое окно Probit Analysis (Пробит-анализ).

Иллюстрированный самоучитель по SPSS 10/11 › Регрессионный анализ › Пробит-анализ
Рис. 16.22: Диалоговое окно Probit Analysis (Пробит-анализ)

  • Поочередно перенесите переменные п в поле частоты отклика, переменную nges в поле наблюдаемого общего количества, переменную gruppe в поле факторов и переменную dollar в поле ковариат.
  • При помощи соответствующей кнопки для факторной переменной необходимо определить область принадлежности; для нашего примера она равна целым числам: 1 и 2.
  • Стандартным подходом при проведении пробит-анализа стало логарифмическое преобразование значений ковариат (при помощи десятичного логарифма); задайте и Вы это преобразование.
  • Оставьте установку обычной пробит-модели и щелкните на кнопке опций. Дополнительно к установленным статистикам активируйте тест параллельности, который является уместным при анализе разнообразных групп.
  • Начните расчет нажатием ОК.

Результирующие данные выводятся в старой табличной форме и являются довольно обширными. На одном из первых шагов определяются так называемые "пробиты". Они представляют собой стандартные значения, которые отвечают площади под частью кривой стандартной нормального распределения, соответствующей отношению частоты положительных ответов к общей частоте. Так, в первой группе, которой предлагалось по 1000 долларов, это предложение приняли 8 человек из 59, что соответствует относительной доле, равной:

p = 8 / 59 = 0.1356

Это значение интерпретируется как часть площади под кривой стандартного нормального распределения (которая, как известно, суммарно нормирована к 1). По соответствующей статистической таблице можно установить, что стандартное значение равно -1.10. Это значение является пробитом к дозировке 1000 долларов.

Упомянутые пробиты для обеих групп в зависимости от логарифма дозировки представлены на одной диаграмме, которую вы можете увидеть в окне просмотра:

Для обеих групп график является практически линейным, что является предпосылкой для дальнейших рассуждений. В противном случае дополнительно следовало было бы рассматривать ход процесса воздействия на основе исходных значений (то есть без логарифмического преобразования).

Иллюстрированный самоучитель по SPSS 10/11 › Регрессионный анализ › Пробит-анализ
Рис. 16.23: Отклики, трансформированные пробитом

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.