Иллюстрированный самоучитель по Mathematica 3/4

Основные классы данных. Численные данные.

Вещественные числа

Численные данные могут быть представлены также десятичными вещественными числами, которые могут иметь различную форму, например 123.456, 1.23456 10^2.12345.6 10^-2 и т. д. В общем случае они содержат мантиссу с целой и дробной частями и порядок, вводимый как степень числа 10. Как правило, вещественные числа в системах символьной математики могут иметь мантиссу с любым, но конечным числом знаков. Пробел между мантиссой и порядком эквивалентен знаку умножения *:

23.456 * 10 ^ 100
2.3456 * 10 ^ 101
10 ^ -100
1 /
    100000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000000000000000000
10. ^ -100
1.x 10 ^ -100

Как принято в большинстве языков программирования, целая часть мантиссы отделяется от дробной части точкой, а не запятой.

Mathematica производит операции с числами изначально как с целыми. Однако установка значка разделительной точки означает, что число должно рассматриваться как вещественное. Например, 1 – целое число, но 1. – уже вещественное число. Для представления выражения ехрг в форме вещественного числа используется функция N [ехрг] или N [ехрг, число_цифр_результата].

Примеры

1 / 3
1 / 3
1. / 3.
0.333333
N[1 / 3]
0.333333
N[2 * Pi, 50]
6.283185307179586476925286766559005768394338

Вещественные числа всегда имеют некоторую погрешность представления результатов из-за неизбежного округления и существования так называемого машинного нуля – наименьшего числа, которое воспринимается как нуль. В терминах системы Mathematica говорят о приближении числовых данных как об их аппроксимации, хотя в отечественной литературе под аппроксимацией чаще подразумевают описание некоторой зависимости между данными достаточно приближенной аналитической зависимостью.

Mathematica имеет две системные переменные, позволяющие вывести максимально и минимально возможные значения чисел, с которыми оперирует система:

$MaxMachineNumber
1.79769 * 10 ^ 308
$MinMachineNumber
2.22507 * 10 ^ -308

Обратите внимание на то, что функция N [ехрr, m] позволяет получить число с практическим любым числом цифр результата m. Разработчики последней версии Mathematica 4 утверждают, что это верно при количестве цифр результата до одного миллиона, что с лихвой удовлетворяет требованиям подавляющего большинства расчетов и вычислений.

Функции IntegerPart [x] и FractionalPart [x] обеспечивают возврат целой и дробной частей вещественного числа х:

N[Pi]
3.14159
IntegerPart[Pi]
3
FractionalPart[Pi] 
-3. + Pi
N[FractionalPart[Pi]]
0.141593

Еще одна функция RealDigits [x] возвращает список реальных цифр результата и число цифр целой части х:

RealDigits[N[2 * Pi]] {{6, 2, 8, 3, 1, 8, 5, 3, 0, 7, 1, 7, 9, 5, 8, 6}, 1}

Есть и множество других функций для работы с вещественными числами. Они будут рассмотрены в дальнейшем. В Mathematica 4 функция RealDigits имеет расширенные формы, например RealDigits [x, b, len, n]. Для получения цифр мантиссы введены функции MantissaExponent [x] и MantissaExpo-nent[x,b].

Комплексные числа

Многие математические операции базируются на понятии комплексных чисел. Они задаются в форме:

z = Re(z) + I * Im(z)

…или:

z = Re(z) + i Im(z)

Где знак I (i) – мнимая единица (квадратный корень из -1), Re (z) – действительная часть комплексного числа, а Im (z) – мнимая часть комплексного числа. Пример задания комплексного числа:

2 + I3

…или:

2 + 3 * I

Мнимая часть задается умножением ее значения на символ мнимой единицы I. При этом знак умножения * можно указывать явно или заменить его пробелом – в последнем случае комплексное число выглядит более естественным. Функции Re [ z ] и Im [ z ] выделяют, соответственно, действительную и мнимую части комплексного числа z. Это иллюстрируют следующие примеры:

Re[3 + 2 * 1]
3
Im[3 + 2 I]
2

Большинство операторов и функций системы Mathematica работают с комплексными числами. Разумеется, это расширяет сферу применения системы и позволяет решать с ее помощью различные специальные задачи – например, относящиеся к теории функций комплексного аргумента. Комплексные числа широко используются в практике электро- и радиотехнических расчетов на переменном токе.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.