Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.



Иллюстрированный самоучитель по Mathematica 5

Резюме

В системе Mathematica предусмотрены все функции, необходимые для выполнения основных алгебраических и аналитических операций. Очень легко, в частности, выполняются всевозможные подстановки. Их можно выполнять глобально, одновременно, повторно, по образцу. Предусмотрены действия с дробями и со степенями, раскрытие скобок, приведение подобных. Имеются различные функции для выполнения операций над многочленами, в том числе и весьма трудоемкие для ручного счета, такие как разложение на множители. Легко вычисляются наибольший общий делитель и наименьшее общее кратное полиномов, а также результант.

Что касается поля рациональных дробей, то для него предусмотрены не только четыре основных действия (они предусмотрены для любых выражений), но и более специфические операции вроде сокращения, раскрытия произведений и целые положительных степеней в числителе, а также разложение рациональной дроби на простейшие, разложение числителя и знаменателя на множители, приведение к общему знаменателю с последующим сокращением общих множителей числителя и знаменателя в полученной сумме. Ряд функций предназначен для упрощения результатов вычислений.

В области линейной алгебры также предусмотрен широкий набор операций: вычисление различных произведений (векторов и матриц), норм (векторов и матриц), матричные операции (в том числе обращение матриц и нахождение псевдообратных матриц). Есть средства решения систем линейных уравнений, в том числе и несовместных (нахождение псевдорешений).

Что касается операций анализа, то и они, если не считать перехода к пределу, реализованы превосходно. Лишь при вычислении пределов нужно соблюдать осторожность: в случае несовпадения односторонних пределов любой из них система Mathematica может подсунуть в качестве двустороннего. Система Mathematica весьма успешно справляется с вычислением производных (в том числе и смешанных) и интегралов (определенных и неопределенных). После вычисления производных полученный результат иногда нуждается в упрощении. Зато разложение функций в ряд Тейлора, да и действия над рядами выполняются безукоризненно. Все это позволяет произвести довольно полное исследование функций (определить их интервалы монотонности, найти локальные и глобальные экстремумы, найти интервалы выпуклости и точки перегиба) и построить их графики.

При необходимости исследовать скалярные или векторные поля, задаваемые функциями нескольких переменных, можно воспользоваться функциями Outer и Inner для определения операций векторного анализа. Легко определяются градиент, гессиан, лапласиан, якобиан и дивергенция. Впрочем, все нужные определения (причем в самых разнообразных системах координат) имеются в пакете Calculus`VectorAnalysis`. Функциями этого пакета можно воспользоваться и для решения других задач, например для исследования дифференциальных уравнений. Для нахождения решений дифференциальных уравнений и их систем используется функция DSolve. Она может не только находить общие решения, но и учитывает дополнительные условия (начальные, граничные) и потому может решать, например, задачу Коши. Если же функция DSolve не может найти решение в аналитическом виде, для численного решения можно воспользоваться функцией NDSolve.

Если Вы заметили ошибку, выделите, пожалуйста, необходимый текст и нажмите CTRL + Enter, чтобы сообщить об этом редактору.