Дробная часть вещественного числа (функция FractionalPart)
А ведь разность показателей представляет собой разность последовательных чисел Фибоначчи, и потому опять есть число Фибоначчи! Внимательно следите за моей мыслью? Может, надеетесь на дальнейшие упрощения? Так вот они:
Можно (для удобства исследования) эту дробь обратить и применить к ней тот же прием! И с полученной дробью можно поступить так же! Фактически у нас получатся элементы цепной дроби! После двух десятков (с хвостиком) шагов мы убедимся, что желанного нуля у нас так и не получится. Значит, после десятичной точки все-таки есть цифры, отличные от нуля! Ну вот, а вы говорили о коварстве авторов, придумывающих "подленькие" задачи! Но как же найти эти цифры? Ну, после проделанной работы у вас есть уверенность в наличии таких цифр, и потому вы знаете, что, в конце концов, все время увеличивая точность, вы их найдете. Это важно, ибо вы тем самым убедились в том, что алгоритм, хотя бы теоретически, не зациклится. Но есть и более быстрый способ, ведь мы нашли целую часть и знаем, что дробная не равна нулю. Можем без каких бы то ни было опасений попытаться вычислить логарифм дробной части:
Сразу не получилось… Но можно предпринять и вторую попытку.
Так, оказывается, после запятой 50810 нулей! Убедимся в этом.
Что касается нулей, то, хоть я и вычеркнул подавляющее их число, предварительно я их посчитал в Word! И их оказалось 50810! Между прочим, убедиться в том, что число fa,n не целое, не так-то просто.